Machine learning modeling for time series problem: Predicting flight ticket prices

نویسنده

  • Jun Lu
چکیده

Machine learning has been used in all kinds of fields. In this article, we introduce how machine learning can be applied into time series problem. Especially, we use the airline ticket prediction problem as our specific problem. Airline companies use many different variables to determine the flight ticket prices: indicator whether the travel is during the holidays, the number of free seats in the plane etc. Some of the variables are observed, but some of them are hidden. Based on the data over a 103 day period, we trained our models, getting the best model which is AdaBoost-Decision Tree Classification. This algorithm has best performance over the observed 8 routes which has 61.35% better performance than the random purchase strategy, and relatively small variance over these routes. And we also considered the situation that we cannot get too much historical datas for some routes (for example the route is new and does not have historical data) or we do not want to train historical data to predict to buy or wait quickly, in which problem, we used HMM Sequence Classification based AdaBoost-Decision Tree Classification to perform our prediction on 12 new routes. Finally, we got 31.71% better performance than the random purchase strategy. A python implementation of this project is available online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies

The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Modeling and prediction of time-series of monthly copper prices

One of the main tasks to analyze and design a mining system is predicting the behavior exhibited by prices in the future. In this paper, the applications of different prediction methods are evaluated in econometrics and financial management fields, such as ARIMA, TGARCH, and stochastic differential equations, for the time-series of monthly copper prices. Moreover, the performance of these metho...

متن کامل

An analysis of heterogeneous ensembles at predicting stock prices of Brazilian power companies

Financial time series analysis has long been a target of study for time series modeling and machine learning, in particular the application of different predictive models to classify and estimate the value for a given asset. In this work, the author analyses the performance of a heterogeneous ensemble using stacking, composed of a SVM, a Ridge regressor and a Random Forest model on the task of ...

متن کامل

Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches

Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.07205  شماره 

صفحات  -

تاریخ انتشار 2017